| Mining, Refining & Recycling: "Develop refining and recycling techniques to maximise W circularity"                                               | Mining:  "Identify and develop W-containing deposits to maximise extraction efficiency"                                                                                                               | Refining:  "Develop refining technology to reduce energy consumption and maximise purity of W extracted"                                                                                                        | Recycling:  "Develop capability to reprocess used W (inc. activated W) into new fusion feedstock"                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microstructural Design & Manufacture: "Develop microstructures for next-generation fusion systems (PFCs, Shielding & Coatings)"                   | Plasma Facing Components:  "Develop manufacture techniques to produce improved microstructures resilient to thermal excursions"                                                                       | Neutron Shielding:  "Develop shielding materials and manufacturing processes to improve efficacy of neutron shielding (volume/weight reduction)"                                                                | Protective Coatings:  "Develop manufacture methods of W and ceramic coatings to optimise microstructure for liquid metal coolants"                                                             |
| Operational Testing:  "Quantify efficacy of microstructural strategies using international testing facilities"                                    | High Heat Flux & Plasma:  "Develop tiered testing strategy, to increase down-selection efficacy to determine successful microstructure-manufacture combinations"                                      | Irradiation:  "Develop irradiation standard, to facilitate comparison between different irradiation campaigns/facilities. Assess neutron capture/resilience"                                                    | Liquid Metal:  "Develop testing facilities and procedures representative of fusion environments, with standardised metrics for susceptibility to corrosion"                                    |
| Characterisation & Properties:  "Identify and understand successful microstructures to inform future developments of manufacturing strategy"      | Microscopy:  "Utilise existing expertise and develop new techniques to assess and screen microstructures"                                                                                             | (Micro)mechanics:  "Establish high-throughput micromechanical testing methodologies to screen samples before and after irradiation"  "Establish relevant testing standards for functional in-vessel components" | Thermal Properties:  "Establish relevant testing standards for functional in-vessel components"                                                                                                |
|                                                                                                                                                   |                                                                                                                                                                                                       | "Produce material property handbook suitable for fusion machine design engineers for successful material-manufacture pairings"                                                                                  |                                                                                                                                                                                                |
| Component Engineering:  "Establish rigorous engineering standards, with simple joining and remote maintenance instructions for engineers"         | Joining:  "Identify and develop joining methodologies for W to other relevant material systems: Cualloys, steel, SiC, V"                                                                              | Qualification:  "Establish relevant testing standards for functional in-vessel components"  "Establish acceptance protocols for part manufacture and repair"                                                    | Remote Maintenance:  "Develop in-situ NDT inspection techniques"  "Develop in-situ tile stripping and replacement methodologies"  "Establish acceptance protocols for part repair"             |
| Hierarchical Modelling:  "Develop existing modelling capability to predict lifetime performance and inform maintenance schedules of W components" | Tritium Transport Modelling:  "Identify probable H³ trapping sites in W microstructures"  "Propose microstructural, processing and maintenance changes to reduce retention and improve release of H³" | Microstructural Stability:  "Identify relative stability under irradiation of proposed microstructures (matrix, precipitates, fibres, etc.)"  "Inform microstructural development strategy"                     | Multiscale Modelling:  "Establish multi-scale modelling to match micromechanical testing to bulk mechanical performance"  "Predict and validate microstructural performance under irradiation" |

Sub-Theme 2

**Sub-Theme 3** 

Sub-Theme 1

Theme



## General Programme (~30mins)

- How could the overall objective be improved?
- Are there any missing themes?
- Are there any themes that should be removed, changed or replaced?
- Is there a better way to structure the approach (e.g. component or facility focussed)?
- What is missing from theme objectives? Can they be improved or focussed?
- Are there any missing sub-themes?
- What are the key issues surrounding a UK tungsten supply chain?
- When do these need solving? (within 10 years, before 2040, after 2040)
- What projects could solve these, and what input is required?
- What is achievable in the next 5-10 years? Where should we focus?
- Is anyone (individual/group) missing today that should be included?



# Theme Focussed (~60mins)

- What are the main challenges specific to this theme?
- When do they need to be overcome by?
- Do the sub-themes capture these challenges? What is missing?
- What is missing from this theme's main objective?
- What is missing from the sub-themes' objectives?
- Does scope accurately capture challenges? Is scope broad enough, or can it be focussed?
- What work needs to start in the next 3 years to be overcome challenges in time?
- What targets should be achieved in the next 5-10 years?
- What challenges/projects should be tackled with each of the other themes?
- What existing facilities can facilitate progress? What facilities are missing?
- What should be prioritised for different amounts of funding? E.g. £1m, £2m & £5m for each theme

### WP2

- Limited testing facilities and techniques & time
  - Impact on downselection strategies
  - Downselection needed early on
- Isolate and focus on Unique Selling Point
  - Pump primers
  - Biggest plant risk & biggest output impact
- Promotion of spinoff opportunities
- Roadmap capture relative maturity of challenges

### WP5

- Qualification
- Target components
  - Don't box in too early by codes and standards
- Embed circular economy throughout programme
- Rig development
- Modelling component history & downstream effects
- Joining & inspection
- Metrology for in-situ monitoring model to link characterisation to this
- Agnostic design for proof of capability

## WP4 & WP6 Thoughts & Feedback

### General Feedback:

- Critical to have open information flow prevents 'chicken and egg'
- Critical to establish what is <u>needed</u>. How much are we engineering? How much are we researching?
  - Tight focus drives collaboration
  - Costs likely too high-as is. Needs downselection.
- Fundamentally, what are we looking to develop? What does that mean W samples look like? How
  to we then make them? Risk that these bottleneck project start.
- We like "pure W". What is (realistically), pure W?
- What criteria can be relaxed? Low activity?
- Important to have both a bottom-up (science) and top-down (engineering) approach
- Can we "shuffle" components as pseudo-reuse?
- Sub-themes are wildly different in size and scope (multiscale modelling could be half a dozen people).
   But estimating ~£1.5M per sub-theme (assuming no n).

### Missing Themes (General)

- Dedicated RDM / Comms / Integration
  - Distillation of key needs / questions / results
- Uncertainty / qualification / regulation / economics
  - Good initial research exercise -> Drives scoping and costs
- Cross-industry learnings? What isn't exclusive to W? Or fusion?
- Engineering scale development and design (enough detail on stresses? Defects? Repair?)
- Redeposition / dust?

## WP6 specific Thoughts & Feedback

- Agree on a certain grade/type of W from a manufacturer point of view get the
  microstructure specifications as much as possible
  Build all models tailored towards that particular 'agreed' W microstructure for
  better comparison and validation of models
- Figure out main failure modes that will kill the material fastest (inter or intra granular? What about ppts?)
  - Focus models tailored towards that failure mode first
- Integrate between component engineering (even joining etc.) to heirarchical multi-scale modelling
- Multi-physics modelling in addition to multi-scale
- Digital twin set-ups?
- Missing things in WPs:
  - Oxidation modelling (surface oxides) (reaction modelling in addition to transport modelling)
  - Interface modelling (W/steel, W/liquids, W/CuCrZr etc)
  - Processability issues need to be modelled
  - UQ for different aspects, at different levels
  - Unification of codes (design codes)
  - FAIR data principles, data handling can be a manned job (Digilab for LIBRTI for example)

### Extra WP4/6 General

#### Missing Sub-Themes (WP4)

- "Microscopy" should be "Microstructural Analysis" -> Cover diffraction, Elasticity, etc
- Does WP4 need to be separate or is it integrated enough? Two hats?
- Use of test houses? (Building UK capability)
- Use of multiple techniques for characterisation (c.f. Felix's talk on invisible defects)

### Missing Sub-Themes (WP6)

• Surrogate (AI) models for scale-bridging

#### Missing People

Funders: Investors / DESNZ

#### Potential sub-projects:

- Coupled microstructural modelling & characterisation & irradiation
- Legislation / policies / data sharing
- Multiscale modelling

#### Notes:

- Economics of recycling critical. Killed GEN IV fission. And 80% vs 100% recycling doesn't fix supply chain.
- We like pure W. But there's a lot on pure W.
  - Avoid overlap with EUROFUSION.
  - If irradiated W is important then this is a huge bottleneck.
- People aren't widly fussed about W alloys in the same way NEURONE works. Important to establish grades. But again not much alloy dev.
- DESNZ are big fans of staged funding. Could WISE-1 as "alloy design" and WISE-2 with neutron irradiation
- UKRI students cannot contribute to deliverables