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Develop and validate a novel digital qualification approach for 

V-4Cr-4Ti structural material, while engaging regulators to 

ensure acceptance and compliance

• Novel Digital Qualification method trialled and validated

• Qualification Pipeline for materials required in fusion, 

specifically Tokamak Energy (inc. Inspection & Testing Plan)

• White Paper on Industrialisation of V-4Cr-4Ti

Main Goal (DSIT tactical project)

Successful Outcomes

ORNL

Novel Qualification Strategy

Asset

Components

Parts

Materials

Spherical Tokamak [ARC, STEP, Tokamak Energy]

Liquid metal Breeder blanket

Plate, Sheet, Tube (straight + bent)

V44 (inc. forming & joining)

Coatings?

R
e
le

v
a

n
c
e

O
p

e
ra

ti
o

n
a
l

S
tr

a
te

g
ic

Time Horizon

Short-term Long-term

SIGNALLING

PLANNING

STRATEGY

FORESIGHT

Immediate 

reactions:

• Kyoto Fusioneering 

(ICFRM)

• ATI materials (US 

contracts in play)

• FIRE IMPACT

• US/Japan 

manufacturing 

R&D feasibility 

trials

Short term plans:

• DSIT Tactical 

fund allocation for 

novel qualification 

development for 

V44

• Spillover benefits 

of novel digital 

qualification 

method

• Materials 

database 

population Mid-term choices:

• Materials testing 

capability 

development

• Qualification pipeline 

for V44 and Liquid Li 

breeder blanket 

design in tokamak

• Strengthening 

strategic 

partnerships with 

International players

Long-term bets:

• V44/Li self-cooled 

blanket as the optimal 

solution for commercial 

Fusion powerplants

• Investing in Domestic 

UK Vanadium material 

& manufacturing 

supply chain

• Become world leading 

in Standardised Liquid 

Lithium testing

• Fusion-specific 

investment into 

Vanadium R&D and 

Industrialisation

Vanadium alloys, combined with liquid metal breeder blankets, have long been considered a promising option for tritium breeding in fusion 

reactors. These vanadium-based alloys exhibit excellent high-temperature creep resistance, high thermal strength and strong resistance to 

swelling under irradiation. Their low activation characteristics make them attractive structural materials; an alternative candidate to 

conventional reduced-activation ferritic/martensitic steels. The high thermal conductivity and favourable nuclear properties of V-4Cr-4Ti alloys 

also reduce the need for neutron multipliers or lithium-6 enrichment in liquid lithium breeder blanket systems. 

UKAEA is developing strategy & International positioning in the vanadium-alloy landscape (R&D, supply chain, industrialisation).

Bayesian optimisation

Output : 

Surrogate Model for qualification 

acceleration

Modelling:

• Defining uncertainties

• Predicting stress-strain curves, which can 

be used to draw out scalar points (Data)

Testing:

• SSJ3 Tensile testing under high 

vacuum at varying T up to 900C

• Strain rate sensitivity study

Data:

• UTS

• YS

• Elongation

EPRI (regulatory engagement of this 

novel Bayesian approach and 

qualification blueprint)

Input:

• Data from Literature data

• Data from tensile test (25 ºC to 900 ºC)

Liquid metals

• Necessity to specify a standard composition with impurity limits

• Purity of commercial Li today is lower than that in 80s/90s

• Taking into account MHD pressure drop and consideration of 

coatings → Liquid metals conduct electricity and higher pumping 

power is needed to move the liquid metal.

• Potential coatings may also be for: Tritium permeation barrier, and 

corrosion resistance.

• Improved predictive modelling of mass transfer (dissolution and 

deposition of elemental and product species) under non-isothermal 

and dissimilar-material concentration gradients is needed. 

• Li removes O from V (preventing embrittlement), but C, N in Li 

diffuse into V-alloys

Irradiation

• Low swelling under neutron irradiation

• Effect of interstitials and optimisation of Ti-rich precipitates for 

resistance to irradiation hardening

• Radiation accelerated corrosion and cracking needs to be studied.

• Neutron irradiation and transmutation-produced He effects and their 

impact on similar and dissimilar joints need to be studied.

• At high temperature, effects of oxygen from irradiation environment 

are essential, especially at higher dose levels [4].

• Synergistic testing requirements.
Evolution of microstructure with 

temperature: Precipitate formation during 

the fabrication process of NIFS-HEAT [1]

Vanadium alloy manufacturing Environmental testing 

Bayesian Optimisation progress for 

Yield Stress

Bayesian Optimisation progress for 

Ultimate Tensile Stress

V-4Cr-4Ti V-4Cr-4Ti
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Schematic illustration of MHD (Magnetohydrodynamic) pressure drop (left) and the role of 

insulator coating (right) when electrically conductive coolants [1]

Tube forming process flow for high purity, 

low activation V-4Cr-4Ti alloy [2]

Tensile curves for annealed V-4Cr-4Ti 

at a strain-rate of 10-3 s-1 illustrating 

Dynamic Strain Ageing regime [5]

Examples of V–4Cr–4Ti manufacturing 

Study / Reference Starting Material
Melting / Refining 

Route
Scale Forming & Processing Steps Annealing / Heat Treatment

1200 kg Industrial 

Heat (Johnson & 

Smith)

Vanadium from 

aluminothermic reduction 

+ high-purity Cr/Ti

EBM purification → 

Double Vacuum-Arc 

Melting (VAM)

1200 kg
Extrusion → warm/cold rolling 

→ tubing/Plate/sheet/Rod

Repeated vacuum anneals at 

1000–1050 °C between steps

NIFS-HEAT-1 

(Muroga et al.)

Vanadium purified after 

aluminothermic reduction 

(with enhanced impurity 

control)

EBM of V, Cr, Ti → 

Vacuum Arc Remelting 

(VAR) to form alloy

30 kg 

(200 kg 

planned)

No downstream forming

Heat cycles during 

calcination, EBM & VAR; no 

formal post-forming 

annealing

SWIP-30 

(Fu et al.)

Vanadium from 

aluminothermic reduction

Double Electron-Beam 

Melting (EBM) in high 

vacuum

30 kg

Hot forging → hot rolling (~85% 

deformation) → cold rolling to 

final thickness

Vacuum annealing at 1273–

1293 K + additional controlled 

cycles (SA, SAA, SACWA) 

for strengthening

Joining of V-4Cr-4Ti by Gas Tungsten Arc and laser welding 

methods were demonstrated. Optimisation of the Post Weld Heat 

Treatment was made by optimising precipitation in weld metals [3]
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